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ABSTRACT 

Automatic Ki67 index (KI) assessment has become popular in breast cancer research; however, the results are easily 
influenced by non-tumor cells. This can be addressed by using neural networks to predict tumor areas. Compared to 
human annotation, cytokeratin immunostaining can more accurately highlight epithelial regions and provide reliable 
ground truth. We built an immunohistochemistry (IHC)-supervised neural network using the ground truth extracted 
from consecutive cytokeratin-stained slides, which could predict the tumor area in Ki67 images of breast cancer. The 
effect of masks on KI quantification was evaluated in 20 patients with breast carcinoma. Set A (three cases) was used to 
measure the similarity of adjacent whole-slide images (WSIs). A UNet++ (with an EfficientNet-b7 backbone) model was 
built using Set B (67 cases) for tumor area prediction. The KI in Set C (20 cases) was quantified with and without the 
application of tumor-area masks, and the KI difference was computed. The mean intersection over union of the epithelial 
masks extracted from adjacent cytokeratin sections was 0.72 (0.68–0.76). After training and validating in 49 cases, the 
intersection over union in the test set was 0.44–0.73. At the tile image-level, KI difference was −42.5–41.7%. Images 
with the highest difference usually contained numerous lymphocytes or vessels, and the masks prevented disguised cells 
from being counted. At the WSI-level, the hotspot location changed in 18/20 cases, but hotspot KI changed 
insignificantly (−1.0% on average). The global KI changed less (0.9% on average). Thus, consecutive IHC staining 
provides substantial, precise, and reliable ground truths that trained the algorithm efficiently. This IHC-supervised 
training workflow can be applied to other targets by replacing IHC antibodies. Furthermore, the virtual tumor areas 
improved Ki67 counting by excluding the non-tumor areas at the tile image-level, although the effect on the WSI-level 
was insignificant. 

 
INTRODUCTION 

Ki67 is a protein expressed in the nucleus during all 
phases of the cell cycle, except G0. The Ki67 index (KI), 
i.e., the percentage of immunoreactive tumor cells among 
tumor cells, is a measure of tumor proliferation Gerdes 
et al. (1984). KI is widely used in the subclassification of 
hormone-positive breast carcinomas. With a cutoff point 
of 14%, tumors are classified as luminal type A if the KI 
is < 14%. Otherwise, the lesions are classified as luminal 
type B Goldhirsch et al. (2011). This helps clinicians to 
decide whether chemoradiotherapy is appropriate for the 
patient Thomssen et al. (2021), Nielsen et al. (2021). 
Thus, it is critical that KI is counted precisely. However, 
in most cases in daily routine, the KI is visually estimated 
by pathologists. Even if it is carefully counted according 
to the standard international protocol, intraobserver and 
interobserver variations remain considerable Dowsett et 
al. (2011), Polley et al. (2015). In recent decades, digital 
image analysis has increasingly been adopted by 
pathologists and researchers for automatic KI 
assessment, using either commercially available or 

 

public-domain image analysis software Tuominen et al. 
(2010), Acs et al. (2019), Abubakar et al. (2019). In breast 
carcinoma, using an automated scoring system, the 
intraclass correlation coefficient for average KI scores 
across 14 laboratories can reach 0.83 (highly correlated), 
and even higher (0.89) for laboratories using scanners 
from a single vendor Acs et al. (2019), Rimm et al. (2019). 
This indicates that assessing KI by means of algorithms 
is more reliable than assessing it based on human 
experience alone. The software often relies on color 
deconvolution algorithms to detect DAB chromogen-
stained (brown) and hematoxylin-stained (blue) cell 
nuclei Ruifrok et al. (2001), Saha et al. (2017), Lakshmi et 
al. (2020). However, the staining results of the nuclei of 
tumor cells and non-tumor cells, such as lymphocytes 
and stromal cells, can cause KI to be underestimated or 
overestimated. Therefore, when manipulating these 
applications, pathologists are required to pre-annotate 
invasive carcinoma areas to avoid interference from non-
tumor cells and optimize KI quantification Volynskaya et 
al. (2019). To address this problem, some algorithms 
have attempted to exclude non-tumor cells based on 
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 their shape and size; however, this approach has not 
achieved satisfactory results Valkonen et al. (2020). 
Another solution is the virtual double-staining method: 
Ki67-stained images are analyzed using a cytokeratin (CK) 
mask extracted from an adjacent CK-stained slide 
Koopman et al. (2018), Røge et al. (2016), Wessel 
Lindberg et al. (2017). Although technically feasible, this 
method requires consecutive CK-stained slides and is, 
therefore, unsuitable for daily clinical practice. A recently 
reported solution involves training a neural network using 
fluorochromogenic CK-Ki67 double-staining to predict 
CK masks from Ki67-stained images, which provides a 
convenient alternative to the ground truth annotated 
manually by an expert Valkonen et al. (2020). This neural 
network could predict the epithelial regions in Ki67-, 
estrogen receptor-, and progesterone receptor-stained 
slides and refine the quantification results. However, 
fluorochromogenic CK–Ki67 double-staining costs much 
more than single staining and is not efficient for deep 
learning, which consumes a lot of data. Inspired by these 
innovative studies, we observed the feasibility of 
immunohistochemistry (IHC-supervised) learning 
Valkonen et al. (2020), Brázdil et al. (2022), Hong et al. 
(2021). IHC-supervised learning trains a neural network 
to predict the target-stained mask, given a source-stained 
image. In this case, the ground truth was obtained from 
IHC rather than from human annotations, which has 
several advantages, such as reliability, precision, and 
efficiency. First, IHC highlights and distinguishes cells 
according to their unique proteins, which indicates the 
nature of the cells, rather than according to morphology, 
on which pathologists rely heavily. Secondly, the ground 
truth extracted from an IHC image is intricate and 
detailed. Finally, and most critically, for data-consuming 
deep learning, a large amount of IHC ground truth can be 
provided quickly and economically. 

In this study, to explore the potential of IHC-supervised 
learning, we combined two virtual double-staining 
methods. A neural network was developed with 
consecutive CK immunostaining and was used to predict 
the tumor area in breast cancer Ki67 images. Finally, we 
evaluated the effect of tumor-area masks on KI 
quantification. 

MATERIAL AND METHODS 

This study was approved by the Research Ethics Review 
Committee of the Far Eastern Memorial Hospital (No. 
111205-F/DPAI-005). All slides and blocks in the study 
were used in a clinical diagnosis setting, were retrieved 
from the repository, and did not contain any personal 
information. All methods were performed in accordance 
with the relevant guidelines and regulations. Therefore, 
the requirement for obtaining informed patient consent 
was waived by Research Ethics Review Committee of the 
Far Eastern Memorial Hospital. 

Case collection 

 

 

 

We collected data on 94 breast carcinoma cases 
diagnosed at the Department of Anatomical Pathology 
of Far Eastern Memorial Hospital between January 
2020 and September 2022. Patients with lobular 
carcinoma, mucinous carcinoma, and tumor areas with 
< 10 high-power fields were excluded. Thus, 90 
patients were eventually included in the study. Among 
these cases, three (Set A) were used to measure the 
similarity of adjacent whole-slide images (WSIs), 67 
(Set B) were used for IHC-supervised learning and 
testing, and 20 (Set C) were used to evaluate the effect 
of tumor-area masks on KI counting. Furthermore, 
considering a widely adopted usage scenario in which 
users have already selected the tumor area for model 
prediction, it is more practical to focus on images 
containing tumors. To analyze mask performance in 
the tumor area, Set B-1 was built from the test set of 
Set B. First, the WSIs were divided into 1,936 × 1,216 
image tiles. The tile size was equivalent to a resolution 
of 1080 p (full high-definition monitors and digital 
camera for optical microscope), which is commonly 
used in hospitals, and our KI quantification algorithm 
was designed for this image size. Second, if a tile 
contained over 10% of the tumor area, then it was 
added to Set B-1. Table 1 shows the details of all cases. 

Specimen preparation, staining, and scanning 

The specimens used in the routine diagnostic setting 
were retrieved from the repository of the Anatomical 
Pathology Department of the Far Eastern Memorial 
Hospital. Tumor tissue was fixed in 10% neutral-
buffered formalin and was embedded in paraffin. 
Tissues were cut into 5-μm-thick sections and 
mounted on hydrophilic slides. Ki67 and CK 
immunostaining was performed using the Benchmark 
Ultra automated staining system (Ventana Medical 
Systems, Oro Valley, AZ, USA). The slides were heated 

to 96℃ for 34 min for antigen retrieval, followed by 
incubation with anti-Ki67 (30-9, Ventana Medical 
Systems) or anti-CK (AE1/AE3, Ventana Medical 
Systems) antibody and the ultra-View Universal DAB 
Detection Kit (Ventana Medical Systems). 
Hematoxylin was used as a counterstain. The slides 
were scanned using a Hamamatsu S210 microscope 
(Hamamatsu Photonics, Hamamatsu, Japan) at 40× 
magnification (0.23 μm per pixel resolution). WSIs 
were saved in NDPI format. 

Data preparation for IHC-supervised learning 

To facilitate training of the neural network by IHC-
supervised learning, Ki67-stained WSIs and their 
consecutive CK-stained WSIs in Set B were processed, 
including image alignment, tumor area annotation, and 
ground truth mask extraction (Figure 1). As tissue 
shapes and locations in consecutive slides were similar 
but not perfectly identical. We selected CK images as 
references and then rotated and translated the  

730 



 

 
  

HUMAN BIOLOGY 

2024, VOL. 94, ISSUE 4 

ORIGINAL ARTICLE 

Human Biology (Jul-Aug)2024, Vol 94, Issue 4, pp:729-737 Copyright ©2024, Human Biology, visit humbiol.org 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Data details. 

 
Case set 

Case 
count 

Specimen type Histological grade 
Slides 

Excision/Biopsy 1 2 3 

Total 90  13 52 25  

Set A 3 3/0 1 1 1 
Pairs of consecutive 

CK slides 

Set B 67 41/26 9 40 18  

Training 36 20/16 5 23 8 
Pairs of Ki67 and 
corresponding CK 

slides 

Validation 13 09-Apr 2 8 3  

Testing / Set B-
1 

18 12-Jun 2 9 7  

Set C 20 20/0 3 11 6 Ki67 slides 

CK, cytokeratin 

 corresponding Ki67 images to align to these references. 
Ki67 and CK images were rescaled with scale factors 
equal to 1/500, 1/100, 1/50, and 1/7 for varying 
resolutions, and binarized for simplification. Then, the 
optimal angle and offsets of the x- and y-axes were found 
through gradient descent to optimize the loss between 
Ki67- and CK-stained binary images. Second, the rough 
tumor area was annotated to exclude unwanted regions, 
such as the skin, benign breast glands, or inks on the 
margins. Annotation was performed by a licensed 
pathologist (CMH) using the Smart Pathology System 
(version 1.2.0; Quanta Computer, Taoyuan, Taiwan). 
Finally, masks were extracted from the CK images and 
intersected with human-annotated tumor areas to 
construct the ground truth for supervised learning. Color 
deconvolution was introduced to extract the CK masks, 
followed by a Gaussian filter, which is often used for 
denoising. Subsequently, the Otsu thresholding 
algorithm was used to transform the masks into binary 
masks. 

Figure 1: Workflow of data annotation and algorithm 
training. (a) Tumor area was annotated by a pathologist 
(red circle) in cytokeratin (CK) whole slide images 
(WSIs). (b) CK mask was extracted and intersected to 
human annotation. (c) Input Ki67 image was aligned to 
the CK image. (d) UNet++ network, using EfficientNet-
b7 as the backbone, was trained to predict the tumor area 
in Ki67 WSIs. 

 

 

 

Owing to the large size of WSIs, GPU memory is a 
critical issue. To avoid this issue, the WSIs were 
compressed 1/7 times on each side and divided into 
image tiles of 276 × 172 (1/7 of 1,936 × 1,216 
approximately) pixels for training. This is the same 
shape commonly used in monitors and digital cameras 
for optical microscopes. During inference, a WSI was 
divided into image tiles, and the predictions of these 
tiles were stitched back in the same order to 
reconstruct the whole-slide tumor area mask. 

Measurement of similarity of adjacent WSIs 

In IHC-supervised learning, the ground truth was 
obtained from adjacent slides of the input images. 
Therefore, before model development, we measured 
the similarity between adjacent WSIs. To this end, we 
extracted CK masks from pairs of adjacent CK-
stained WSIs in Set A and aligned these masks using 
a previously described method (Figure 1b and c). The 
similarity of these masks was measured using 
intersection over union (IoU). The IoU was calculated 
as the intersection area of the two masks divided by 
their union area Valkonen et al. (2020). The IoU 
approaches 1 as the overlapping area approximates 
100%. 

IHC-supervised learning 

The algorithm architecture was UNet++ based on an 
EfficientNet-b7 backbone (Figure 1d). The core 
framework was based on the traditional UNet model, 
and UNet++ advanced this model by incorporating a 
nested architecture inspired by successful features of 
other networks, notably the feature pyramid network. 
Zhou et al. (2018). This enhanced structure can utilize 
skip connections more effectively, thus optimizing 
the model for complex tasks in medical image 
segmentation. Exponential moving average and 
augmentation methods, including flipping, 
translation, rotation, scaling, and color jittering, were 
applied during training to improve the robustness of  
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 of the model. IoU was chosen to evaluate the accuracy 
of comparing the predicted tumor-area masks with the 
corresponding ground truth masks. 

KI counting and visual validity assessment 

We used another 20-breast carcinoma Ki67 slides (Set C) 
to evaluate the influence of tumor-area masks on Ki67 
quantification. The KI was analyzed from two different 
perspectives. At the image tile-level, the WSIs were 
divided into image tiles of 1,936 × 1,216 pixels (Figure 
2). Using the Smart Pathology System, KIs before 
(version 1.2.0) and after (version 1.3.0) the application of 
tumor-area masks was computed. According to the 
global method recommended by the International Ki67 
in Breast Cancer Working Group, representative fields 
should contain at least 100 tumor cells for scoring. 
Therefore, image tiles containing fewer than 100 tumor 
cells were excluded. In addition, we applied the concept 
of “Pareto hotspot” Plancoulaine et al. (2015), in which 
the 90th percentile of the entire KI range rather than the 
highest one is chosen as the hotspot KI. Another 
technical reason is that the previous algorithm (ver 1.2.1) 
easily misrecognized red blood cells as positive tumor 
cells, which caused extraordinarily high KIs in non-
tumorous vascular regions. As a result, KI values higher 
than the average KI plus two standard deviations were 
considered outlier data and were excluded from the 
analysis. In each case, 10 tiles with the highest KI 
difference (200 tiles in total) were evaluated visually by 
four pathologists. The pathologists gave mask quality 
scores ranging from 1 to 5 (1 being totally inaccurate and 
5 being a good tumor mask and improve KI 
quantification).  

At the WSI-level, since comprehensive KI quantification 
of whole-tumor sections is possible, we could directly set 
the global KI as the KI of the entire tumor in the WSI, 
unlike in the global method of the International Ki67 in 
Breast Cancer Working Group (either unweighted or 
weighted). Hotspot KI was also calculated. Here, a 
hotspot refers to the tile with the highest KI in the 
selected tiles of WSI. The related analyses are presented 
in Table 2 and Table S1. Python software (ver. 3.6.10; 
https://www.python.org/) was used to calculate the KI 
data. Excel (Microsoft Corp., Redmond, WA, USA) was 
used for the statistical analysis of the difference in KI 
(ΔKI = KI with masks – KI without masks, Figure 2). 

RESULT 

Analysis of adjacent WSIs 

The mean IoU for masks of adjacent slides in Set A was 
0.72 (range: 0.68–0.76). This indicated that the upper 
bound of the IoU between two adjacent slides was 
approximately 0.72. In set B, by color deconvolution, the 
IoU between hematoxylin-stained area in Ki67 WSI and 
DAB-stained CK WSI was 0.60 in average (range: 0.09-
0.9). Combine with the study by Valkonen et al. (2020), 

 

their IoU could reach 0.7, we considered an IoU of 
0.58, which is 80% of 0.72, as the endpoint of the IHC-
supervised learning. 

Figure 2: Ki67 index (KI) difference (ΔKI) analysis. 
The tumor region in Ki67-stained whole slide images 
(Case 9 as an example) was selected and divided into 
tiles. Each tile was inferenced with and without masks. 
Then, the ΔKIs were computed and summarized as a 
boxplot. 

 

Evaluation of tumor area-predicting algorithm 

After training, validation, and testing of Set B, the IoUs 
in validation set ranged from 0.02 to 0.79 (95% 
confidence interval: 0.56 ± 0.13), and in the test set 
ranged from 0.36 to 0.69 (95% confidence interval: 
0.57 ± 0.05). For testing set B-1, the IoUs ranged from 
0.44 to 0.73 (95% confidence interval: 0.62 ± 0.04, 
Figure 3), which reached the endpoint of neural 
network development. 

Figure 3: Tumor area predicted by the neural network. 
(a) Overview of a breast carcinoma test case from Set 
B. (b) Predicted tumor regions of the corresponding 
test case from Set B-1. The intersection of the union 
(IoU) is 0.73. (c) Zoomed-in image. (d) Predicted 
tumor regions of the zoomed-in image. 

 

Effect of predicted tumor-area masks in Ki67 
counting 

At the tile image level, ΔKI ranged from −42.5% to 
41.7% (Table 2 and Figure 4a). In the visual validation 
by pathologists, the mean scores were 4.14 (σ = 1.22), 
3.75 (σ = 1.43), 4.56 (σ = 0.77), and 4.01 (σ = 0.81) 
(Figure 4c). The images with large differences  
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Table 2: Ki67 index assessment with and without tumor-area masks. After applying the predicted tumor-area masks, 
the number of selected tiles decreased because the masks eliminated more non-tumor areas. 

 Without mask With mask KI Difference 

Case 
Tile 

Numbers 

Selected 

tiles 

Global 

KI 

Hotspot 

KI 

Selected 

tiles 

Global 

KI 

Hotspot 

KI 

95%CI of 

Δ KI in 

tiles 

Range of Δ KI 

in tiles 

Δ global 

KI 

Δ hotspot 

KI 

1 305 184 8.50% 20.40% 183 8.00% 20.3%* 

-

0.5%±0.1

% 

-4.4%~2.1% -0.50% -0.10% 

2 1295 683 14.2% 25.30% 653 13.9% 25.50% 

-

0.3%±0.1

% 

-7.5%~10.4% -0.30% 0.10% 

3 3290 2390 9.90% 35.70% 2332 9.80% 30.50% 

-

0.5%±0.1

% 

-42.5%~15.3% -0.10% -5.20% 

4 2420 1513 25.7% 46.50% 1503 28.0% 49.50% 

-

2.1%±0.2

% 

-35.8%~28.3% 2.30% 3.10% 

5 660 423 3.40% 10.30% 420 3.40% 10.70% 
0.2%±0.1

% 
-4.1%~5.6% 0.10% 0.40% 

6 2376 1512 8.10% 20.10% 1486 7.90% 18.80% 

-

0.2%±0.1

% 

-12.0%~8.2% -0.20% -1.30% 

7 1242 621 23.1% 46.70% 607 25.6% 52.60% 
2.0%±0.3

% 
-7.3%~28.4% 2.50% 5.90% 

8 3066 733 12.2% 29.40% 712 12.5% 28.50% 
0.2%±0.1

% 
-9.3%~16.7% 0.20% -0.90% 

9 3003 724 21.6% 49.50% 704 23.1% 51.10% 
1.0%±0.3

% 
-7.3%~24.8% 1.50% 1.60% 

10 1518 865 7.70% 20.80% 830 7.50% 15.70% 
0.2%±0.1

% 
-4.8%~9.5% -0.20% -5.10% 

11 1296 512 9.70% 21.10% 502 9.20% 20.40% 

-

0.6%±0.1

% 

-6.6%~3.4% -0.60% -0.70% 

12 1650 616 7.60% 43.80% 607 7.80% 29.50% 
0.0%±0.2

% 
-29.1%~5.0% 0.20% -14.30% 

13 2600 1356 26.4% 53.10% 1355 35.0% 66.70% 
9.2%±0.5

% 
-32.1%~41.7% 8.60% 13.60% 

14 1363 676 11.4% 22.20% 660 11.1% 18.90% 

-

0.3%±0.2

% 

-35.6%~7.7% -0.30% -3.30% 

15 2829 1464 25.1% 49.20% 1447 26.0% 51.40% 
0.6%±0.1

% 
-8.7%~16.8% 0.90% 2.20% 

16 551 342 20.1% 37.20% 340 21.9% 39.10% 
1.3%±0.3

% 
-3.4%~22.1% 1.70% 1.90% 

17 3080 1790 30.6% 52.80% 1761 32.4% 53.90% 
1.3%±0.1

% 
-24.2%~24.4% 1.80% 1.00% 

18 1733 866 7.70% 37.10% 850 7.40% 21.20% 

-

0.5%±0.1

% 

-33.2%~7.3% -0.30% -16.00% 

19 1070 393 2.70% 14.40% 344 3.00% 14.6%* 

-

0.1%±0.1

% 

-3.1%~3.4% 0.30% 0.20% 

20 1649 968 17.4% 39.40% 618 16.9% 35.10% 

-

0.1%±0.3

% 

-30.5%~28.0% -0.40% -4.20% 

95%CI   
14.6% ± 

3.9% 

33.7% ± 

6.4%  
15.5% ± 

4.6% 

32.7% ± 

7.6%   
0.9% ± 

1.0% 

-1.0% ± 

3.0% 

* Hotspot location did not change after masking in these two cases. 
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 (Figure 5) contained numerous lymphocytes or red 
blood cells (RBCs), which were easily misrecognized as 
negative or positive tumor cells before masking. The 
predicted tumor areas excluded lymphocyte-rich stroma 
and blood vessels, preventing inclusion of these 
disguised cells in the Ki67 count.  

At the WSI-level, the masking effect was less significant. 
Δglobal KI values ranged from −0.6% to 8.6% (95% 
confidence interval: 0.9% ± 1.0%). Δhotspot KI values 
ranged from −16.0% to 13.6% (95% confidence 
interval: −1.0% ± 3.0%). Further details are shown in 
Figure 4b. The location of the hotspots (Figure 6) 
changed in 18 of the 20 cases, with the exclusion of 
Cases 1 and 19.  

For clinical classification, we used 14% as the threshold 
for luminal type A and luminal type B. Based on global 
KI before masking, 9 of 20 patients were in the luminal 
type B group, and Case 2 was reclassified as luminal type 
A (from 14.2% to 13.9%) after applying the masks. In 
contrast, based on hotspot KI, 19 of 20 cases were in the 
luminal type B group, and none were downgraded due 
to mask application. 

Figure 4: Ki67 Index (KI) difference (ΔKI) after 
applying virtual tumor masks at tile image level and at 
whole slide image (WSI) level and the visual validity 
assessment. (a) Boxplot showing ΔKI in the tiles of each 
case. Case 13 showed the largest change. (b) Graph 
exhibiting the distribution of ΔGlobal KI and ΔHotspot 
KI for all 20 cases. (c) Four pathologists gave mask 
quality scores ranging from 1 to 5 in 200 image tiles with 
highest ΔKI in Set C. 

 

Figure 5: Ki67 assessment before and after masking. 
With tumor-area masks, most of the non-tumor cells 
were filtered and the Ki67 Index (KI) could be counted 
more precisely. Here, cells are categorized into positive 
tumor cells (red), negative tumor cells (blue), and stromal 
cells (yellow). Stromal cells are not visualized after 
masking. 

 

 

 

Figure 6: Hotspot changes before and after masking.  

 

 

DISCUSSION 

In this study, we built an IHC-supervised neural network 
for predicting tumor areas in Ki67 breast cancer images, 
which enhanced automatic KI assessment. To develop 
image analysis algorithms in digital pathology, we usually 
rely on pathologist annotation as the ground truth, 
which involves labor-intensive preparation of sufficient 
data for neural network construction. In addition, 
human-labeled ground truth cannot be precise at the 
pixel level, particularly for indicating the borders of 
complex areas, such as tumor edges or nuclear contours. 
Limited and inaccurate ground truth datasets hinder 
deep learning. To improve the quantity and quality of the 
ground truth, we chose to use consecutive CK 
immunostaining, which can highlight the epithelial area 
more reliably, accurately, and efficiently than can be 
achieved by humans Valkonen et al. (2020), Brázdil et al. 
(2022), Hong et al. (2021). In our approach, pathologists 
only depicted the tumor area vaguely and roughly to  
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 exclude non-tumor epithelial areas, such as the skin and 
most benign tissues. By combining this with the masks 
extracted from CK images, we were able to harvest a 
large number of fine-quality datasets in a short period. 

High-quality datasets accelerated the development of 
our neural network. In digital pathology image analysis, 
a maturing neural network usually involves hundreds or 
thousands of cases. However, in this study, we only fed 
data of 49 cases into the network and were able to 
achieve our training goal (the IoU reached 0.62 on 
average, which was 86% of the upper bound). These 
results showed that IHC-supervised learning is not only 
efficient in data collection but also in algorithm building. 
Despite the promising results of our algorithm, another 
algorithm created by Valkonen et al. (2020), which also 
predicted epithelial area in Ki67 stains of breast cancers, 
achieved a mean IoU of up to 0.69, which was higher 
than ours. This could be because they used a fluoro-
chromogenic dual stain (Ki67 and CK) in the same slide 
rather than consecutive slides. Thus, the CK fluorescent 
stain can provide more accurate ground truth for 
epithelial masks. However, this method required 
sophisticated staining protocols and a scanner capable of 
capturing fluorescent images. Consecutive CK stains 
require simpler protocols and equipment, meaning that 
it is more accessible and economical for pathology 
laboratory with limited budget. Another reason for low 
performance is morphology. We observed the 3 cases 
with the lowest IoU in the test set (Table S1), it is noticed 
that these tumors were mainly composed of small cells 
nests (less than 10 cells). This increased deviations in 
tumor area between the Ki67 stains and paired CK 
slides. Therefore, the IoU decreased because the ground 
truth extracted from CK slides cannot perfectly reflect 
the epithelial area in Ki67 stains. Even the predicted 
mask worked effectively. Lastly, IoU was also lower in 
core biopsy specimen than excised tumors because the 
tissue shape and location were more different in the 
nearby slides. IHC-supervised learning appears to be 
efficient, so it is possible to apply this pipeline to other 
types of immunostaining and study topics. For example, 
if we replaced Ki67 with hematoxylin and eosin images 
and CK with CD45 to highlight lymphocytes, it may be 
possible to build a neural network to predict and 
measure tumor-infiltrating lymphocyte (TIL) areas in 
hematoxylin and eosin slides. Furthermore, by 
combining these algorithms, neural networks can 
segment different areas in breast cancer images, 
revealing the spatial information of intratumoral 
immune responses Hong et al. (2021). Another trial used 
lymph node hematoxylin and eosin images as the input 
and CK as the ground truth. The algorithm creates a 
virtual CK stain to predict the epithelial components, 
which are usually metastatic carcinomas, in the lymph 
nodes in the visual assessment of the validity of the 
prediction mask at the image tile level, the average score 
from the pathologists was from 3.75 to 4.56. This 

 

indicated that the virtual tumor-area masks predicted by 
our algorithm were adequate, and they optimized 
automated KI quantification in most tiles. First, by 
excluding non-tumor areas at the WSI level, fewer image 
tiles were required for KI assessment, which saved 
computing resources and time. Second, although some 
recent KI-counting algorithms can differentiate stromal 
cells from tumor cells at the cellular level, they still 
struggle to eliminate these disguised cells, particularly 
lymphocytes and endothelial cells. However, our 
overlying virtual tumor masks worked as a filter at the 
structural level to restrict the counting area. Similar to 
the approach used by pathologists, the process involved 
identifying the tumor area prior to counting the cells. 
Third, in our study, masks were the most affected in 
TIL-rich breast cancer (Case 13), increasing the KI by 
9.2% on average. This is because RBCs and TILs are 
easily mistaken for tumor cells, which interferes with the 
KI quantification in TIL-rich areas (Figure 4). The masks 
eliminated these areas and corrected the KI. 

The effect of the tumor-area masks became less 
significant at the WSI level. Although the hotspot 
locations changed in most cases after mask application, 
the difference in KI between the previous and new 
hotspots (ΔHotspot KI) was small, except in the TIL-
rich case (Case 13). The change in global KI was even 
smaller. This might be because the RBC- and TIL-rich 
areas, where the algorithm worked best, were small in 
most cases. The tumor-area masks did not significantly 
influence the clinical classification: only one case (Case 
7) was downgraded after correction of the global KI. 

This study had some limitations. First, we only 
investigated carcinomas of no special type. These masks 
may not work in some common subtypes of breast 
cancer, such as lobular carcinoma or mucinous 
carcinoma. The second limitation is that consecutive CK 
images were easily obtained and were acceptable for 
training, but they were not perfect ground truths, and 
deviations existed (IoU = 0.72 on average). Although 
Ki67-CK double-staining could address this problem, 
the cost and difficulty of ground-truth extraction also 
increased. Increasing the case count for training might 
improve performance. Finally, we did not correlate KI 
with genetic profiles or clinical course. Changes in KI by 
applying the mask seem limited, although more cases 
and long-term surveys are needed to determine the 
clinical utility of corrected KI. 

In conclusion, consecutive CK staining, with little 
human annotation input, can provide a substantial, 
precise, and reliable ground truth, which was able to train 
a neural network algorithm efficiently. Furthermore, the 
predicted tumor areas improved the KI counting by 
excluding non-tumor areas at the tile image level, 
although the effect on the WSI level was not significant. 
Future studies are warranted to verify our findings and 
determine their clinical significance. 
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