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Diverse Cell Death Signature Based Subtypes Predict the Prognosis and 
Immune Characteristics Within Glioma        
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ABSTRACT 

Background: Cell death plays an essential role in the pathogenesis, progression, drug resistance and recurrence of glioma. 
Although multiple cell death pathways are involved in glioma development, there is lack of a stratification and prognostic 
modelling for glioma based on the integration of diverse genes for cell deaths. 

Methods: In this study, 1254 diverse cell death (DCD)-related genes were assessed using the ConsensusClusterPlus 
assessment to identify DCD patterns in glioma. CIBERSORT, ssGSEA, and ESTIMATE algorithms were applied to 
evaluate immune microenvironment differences between subtypes. LASSO Cox regression was used to screen prognosis-
related DCD genes, and a risk score model was constructed. TMB, TIDE, immune infiltration, and immuno therapy 
response was analyzed to evaluate the immune characteristics. 

Results: Two DCD-related subgroups named Clusters 1 and 2, with distinct DCD levels, immune characteristics, and 
prognoses, were determined from glioma samples. A DCD-based risk score model was developed to assess DCD levels 
in glioma patients and divide patients into high- and low-risk groups. We found this risk model can be used as an 
independent prognostic factor for glioma patients. Notably, glioma patients with low-risk scores exhibited subdued DCD 
activity, prolonged survival, and a favorable disposition towards benefiting from immune checkpoint blockade therapies. 

Conclusion: This study established a novel signature classification and a risk model by comprehensively analyzing 
patterns of various DCDs to stratify glioma patients and to predict the prognosis and immune characteristics of glioma. 
We provided a theoretical basis for the clinical application of DCD-related genes in glioma prognosis and 
immunotherapy. 

INTRODUCTION 

Gliomas represent a heterogeneous collection of aggressive 
brain tumors with limited therapeutic options, accounting 
for most primary central nervous system (CNS) tumors 
Nicholson et al. (2021). Their heterogeneity makes it 
challenging not only for treatment but also for prognosis 
and immunotherapy-response predictions. In recent years, 
extensive molecular signatures have been introduced into 
glioma classification, such as IDH mutation and 1p19q 
codeletion Barthel et al. (2019), Hu et al. (2017). Despite this 
advancement, the vast heterogeneity of gliomas continues 
to obscure a comprehensive understanding of their 
classification. Hence, there is an urgent need to identify 
more specific and practical molecular markers to redefine 
glioma subtypes and predict the prognosis and response to 
immunotherapies in glioma patients. Cell death is a critical 
event associated with malignant transformation and tumor 
metastasis Strasser et al. (2020) Numerous cell death 
pathways with different. triggering mechanisms and  

 

functions have been discovered. Based on functional 
differences, cell death can be broadly categorized into 
accidental cell death (ACD) and regulatory cell death 
(RCD), the latter of which encompasses processes 
mediated by specific signaling cascades and results in 
unique biochemical, morphological and immunological 
events Qi et al. (2022). The RCD that occurs under 
physiological conditions is called programmed cell 
death (PCD) or called DCD in this study. PCD/DCD 
is a kind of intentionally induced cell death accompanied 
by a series of controlled reactions resulting in 
programmed self-elimination. Currently known 
PCD/DCD pathways include apoptosis, necroptosis, 
pyroptosis, ferroptosis, cuproptosis, parthanatos, 
entotic cell death, netotic cell death, lysosome-
dependent cell death, autophagy, alkaliptosis, and 
oxeiptosis Kopeina et al. (2022). Dysregulation of 
PCD/DCD is commonly associated with the features 
of malignant tumors, including mortality, metastasis, 
treatment resistance recurrence, and tumor immunity. 

1Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China 
2Department of Neurosurgical Oncology, The First Hospital of Jilin University, Changchun, China  

Correspondence to: Jiajun Chen, Department of Neurology, China-Japan Union Hospital of Jilin University, 
Changchun, Jilin 130033, China. Email: cjj@jlu.edu.cn. 
Ziqian Wang, Department of Neurosurgical Oncology, The First Hospital of Jilin University, Changchun, China. 
Email: wang_ziqian@outlook.com. 
  

                                     

 

 665 



 

 
  

HUMAN BIOLOGY 

2024, VOL. 94, ISSUE 3 

ORIGINAL ARTICLE 

Human Biology (May-Jun)2024, Vol 94, Issue 3, pp:665-675 Copyright ©2024, Human Biology, visit humbiol.org 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 immunity Liu et al. (2022). Apoptosis is an intrinsic 
mechanism of cell death that involves programmed 
dismantling of cellular components with no impact on the 
surrounding living cells. Apoptosis is a common tumor 
suppressor mechanism, whereas apoptosis resistance and 
malignant proliferation are considered to be important 
mechanisms in glioma genesis and development Bogler et 
al. (2002). Necroptosis, a form of programmed 
inflammatory cell death, has recently been confirmed to 
play a vital role in modulating tumorigenesis and tumor 
progression Yan et al. (2022). The necroptotic pathway is 
characterized by RIPK1-RIPK3-MLKL activation 
downstream of TNFR/Fas and TLR-3/4 Yuan et al. 
(2019). Pyroptosis, another inflammatory PCD pathway 
induced by some inflammasomes, has been associated 
with various cancers. Wei et al. (2022). Ferroptosis, 
distinguished by its dependence on iron and 
extramitochondrial lipid peroxidation, is emerging as a 
critical modulator of tumorigenesis Wang et al. (2020). 
Our previous research revealed that cuproptosis-related 
lncRNAs had an excellent predictive ability for the 
prognosis and immuno-microenvironment status of 
glioma patients Wang et al. (2022). Despite these 
advances, a comprehensive exploration of the relationship 
between DCD and glioma prognosis remains inadequate, 
as the detailed roles of DCD in glioma needs further 
research.  

In this study, we aimed to establish a new signature 
classification and a risk model of DCD-related genes to 
stratify gliomas and predict the prognosis and immune 
characteristics of glioma. A series of bioinformatics 
analyses based on TCGA and CGGA were performed. 
Based on the expression value of differentially expressed 
DCD genes, ConsensusClusterPlus was used for a cell 
death molecular subtype analysis. The CIBERSORT, 
ssGSEA, and ESTIMATE algorithms were used to 
evaluate the differences in the immune microenvironment 
between subtypes.  

The differences in HLA family genes and immune 
checkpoint genes between DCD subtypes were analyzed 
by the Wilcox test. LASSO Cox regression was used to 
screen prognosis-related DCD genes, and a risk score 
model was constructed to divide glioma samples into 
high-risk and low-risk groups.  

Independent prognostic factor analysis and combined 
analysis were performed separately to determine whether 
the risk model could be an independent prognostic factor 
for glioma. TMB, TIDE, and immunoinfiltration were 
analyzed to evaluate the immune microenvironment. The 
pRRophetic algorithm was used to predict the IC50 value 
for sensitivity prediction analysis of multiple drugs. 

In summary, our study identified potential biomarkers 
reflecting DCD subtype characteristics, which hold 
potential to become novel prognostic markers and 
immunotherapy-response predictors for glioma. 

 

 

 

MATERIALS AND METHODS 

Data collection 

RNA-seq data (log2(tpm+0.001)) and clinical 
information of the corresponding sample were 
collected from the TCGA-GBM/LGG and GTEx 
datasets and downloaded from the UCSC-Xena 
platform. The downloaded clinical information 
included age, sex, grade, and survival information (OS 
and OS time). A total of 896 samples (207 
paracancerous samples and 689 cancer samples) were 
included, among which 683 cancer samples had 
prognostic information and were used as the training 
set for follow-up analysis. RNA-seq data and 
corresponding clinical prognostic information from 
the CGGA database (Chinese Glioma Genome Atlas, 
http://www.cgga.org.cn/) were downloaded. Samples 
with OS prognostic information, including 313 glioma 
tissue samples, were mainly used for verification of the 
prognostic model. 

Differential expression analysis of DCD-related 
genes 

The DCD-related genes of twelve DCD patterns were 
collected from GSEA gene sets, KEGG, literature, and 
manual collation. A total of 1254 genes related to DCD 
were included in the analysis. After matching with the 
gene expression matrix of the training set, the 
expression values of DCD-related genes in 207 
paracancer samples and 689 cancer samples were 
obtained. A differential expression analysis of all DCD-
related genes between tumor and normal tissues was 
performed through linear regression and the empirical 
Bayesian method provided by the limma package to 
obtain the corresponding P values. Value and logFC of 
genes. In addition, the Benjamini & Hochberg method 
was adopted for multiple inspection and correction, 
and the p value after correction was obtained, namely, 
adj.P.Value. The differential expression analysis was 
assessed according to fold change and significance. 
Differentially expressed threshold settings were as 
follows: adj.P. Value < 0.05 & | logFC | > 2. A 
volcano plot was mapped to display these differentially 
expressed genes. The R package “clusterProfiler” was 
used to conduct GO and KEGG enrichment analyses 
based on the differentially expressed DCD genes. 

DCD Subtype Classification 

Based on the expression values of differential DCD 
genes in each glioma sample obtained above, DCD 
subtype classification was performed using 
ConsensusClusterPlus 1.54.0. Then, based on the 
expression values of all differential DCD genes in the 
training set, the ssGSEA algorithm was used to 
calculate the enrichment scores by using the R package 
“GSVA”. The Wilcox test was used to calculate the 
significance of the p value in enrichment scores  
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 between subtypes, and a violin diagram was drawn. 

Prognosis and clinical correlation analysis of 
subtypes 

Based on the cell death subtypes combined with 

prognostic information, a Kaplan‒Meier survival curve 
was produced, and the significance of p value was 
calculated by the log-rank test. Clinical phenotype 
information was sorted out to compare clinical 
information between subtypes. For each factor type 
variable, a chi-square test was performed to conduct a 
statistical significance test. 

Immune microenvironment analysis 

The immunoinfiltration in tumors is closely related to 
clinical outcome and has been used as drug targets to 
improve patient survival. CIBERSORT algorithm was 
used to evaluate immune microenvironment differences 
among subtypes.  

The proportions of 22 kinds of immune cells were 
calculated based on gene expression levels. The 
infiltration levels of 28 kinds of immune cells were 
calculated by using the ssGSEA algorithm and R package 
“GSVA”. Wilcox test was used to calculate the p values 
among subtypes, and ESTIMATE algorithm was used to 
estimate the stromal score, immune score, and 
ESTIMATE score according to the expression data, and 
the differences between subtypes were calculated by the 
intergroup Wilcoxon test. 

HLA family and immune checkpoint gene 
difference analysis 

Expression data of the HLA family and immune 
checkpoint genes in each tumor sample were extracted. 
Wilcoxon test was performed to analyze the expression 
differences of the HLA family and immune checkpoint 
genes among subtypes. 

GSEA enrichment analysis 

First, h.all. v7.4. symbols in the database MSigDB v7.1 
were taken as the enrichment background. Based on the 
gene expression values of each sample and the 
corresponding subtype information, GSEA was carried 
out using the R package “clusterProfiler” to determine 
subtypes that hallmark gene sets significantly enriched in. 

PPI network analysis 

The STRING database was utilized to predict 
interactions among proteins encoded by cell death genes. 
The input set included differentially expressed cell death 
genes. The PPI score was set as 0.4 (medium confidence), 
and the PPI network was constructed using Cytoscape 
software. 

Six topological algorithms (MCC, MNC, Degree, EPC, 

Closeness, Betweenness) in the cytoHubba plugin of. 

 

 

Cytoscape were used to obtain the ordering of genes. 
The top 20 genes under each algorithm were included 
for intersection to select key cell death genes. 

Identification of genes associated with 
prognostic T-cell depletion 

In the training set, based on the key cell death genes 
obtained above, univariate Cox regression analysis 
was performed to screen out the cell death genes 
significantly related to overall survival, and a p value 
< 0.05 was set as the significance threshold. 

Construction and validation of the DCD-related 
prognostic signature 

LASSO and multivariate cox regression analyses were 
performed successively for further screening of cell 
death genes related to prognosis. According to the 
gene regression prognostic coefficients, the Riskscore 
model is constructed, and the Riskscore calculation 
formula is as follows: 

Riskscore = ∑βgene×Expgene 

βgene represents the multifactor regression 
coefficient of each gene, and Expgene represents the 
expression level of the gene in the training set. 

Furthermore, to verify model accuracy, the Riskscore 
of each sample in the training set was calculated. 
According to the median risk score, samples were 

divided into high- and low-risk groups. The Kaplan‒
Meier curve was applied to evaluate the association 
between the grouping of high- and low-Risk and 
actual survival. In addition, the ROC curves for 1-, 3- 
and 5-year prognosis predicted by the RiskScore in 
the training and validation sets were plotted. 

Correlation of risk scores with clinical 
characteristics 

The distribution box diagram of the risk score in each 
clinical group (age, sex, grade and cluster) was drawn, 
and the Wilcoxon test was used to calculate the 

significance p value between groups (the Kruskal‒
Walli’s test was used to calculate the significance p 
value among multiple groups). 

Nomogram establishment 

First, to determine whether the Riskscore based 
model is an independent prognostic factor, univariate 
cox regression analysis was conducted for age, sex, 
grade and RiskScore, and variables with a p value < 
0.05 significance were included in multivariate cox 
regression analysis. In the multivariate cox regression 
analysis, the variables with p values < 0.05 were 
selected as independent prognostic factors. A 
nomogram was constructed based on these 
independent prognostic factors. In addition, 
calibration and ROC curves were produced to verify 
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 the validity of the nomogram. 

Conjoint analysis 

According to grade and risk grouping, samples were 
divided into six groups: high_risk+G2, high_risk+G3, 
high_risk+G4, low_risk+G2, low_risk+G3, and 

low_risk+G4. Then, Kaplan‒Meier analysis was used to 
assess the association between the features and actual 
prognostic information of the six groups. 

Genomic mutation differences between risk groups 

The somatic mutation files of TCGA-GBM and TCGA-
LGG datasets were downloaded from TCGA and 
merged to obtain the TCGA-GBM/LGG somatic 
mutation maf files. The mutation waterfall maps of the 
top 20 genes with the highest mutation frequencies in 
the high- and low-risk groups were plotted using the R 
package “maftools”. The tumor mutation burden (TMB) 
of each sample was calculated, and the difference 
significance between the high- and low-risk groups was 
calculated by the Wilcoxon test. 

Correlation analysis between diagnostic genes and 
immunity 

Based on the immune infiltration differences between 
subtypes, the Spearman correlation coefficient and the 
corresponding significance p. values between model 
genes and immune cells were calculated, and a 
correlation heatmap was drawn. 

Predictive analysis of drug sensitivity 

Using the pRRophetic algorithm, a ridge regression 
model was constructed based on the GDSC cell line 
expression profile and TCGA gene expression profile to 
predict the IC50 of 138 kinds of drugs. The Wilcox test 
was used to determine whether there were significant 
differences in the IC50 of each drug between the high- 
and low-risk groups. 

Immunotherapy response prediction 

Immunotherapy response was predicted by tumor 
immunodysfunction and elimination (TIDE) analysis. 
The TIDE tool was used to calculate the TIDE value of 
each sample in the high-risk and low-risk groups, and the 
Wilcoxon test was used to calculate the significance of 
the difference between the groups. 

Immunotherapy data analysis 

The GSE91061 dataset was downloaded from the GEO 
database [20], including 20 samples with a response and 
78 samples with no response to immune checkpoint 
blocking therapy. According to the calculation formula, 
the Riskscore value of each sample in the dataset was 
calculated. According to the median risk score, all 
samples were divided into high-risk (risk score ≥ median 
risk score) and low-risk (risk score < median risk score) 

 

 

 

groups. Kaplan‒Meier survival analysis was performed 
for patients in the High_Risk and Low_Risk groups by 
using the “survival” package. The Wilcoxon test was 
used to calculate the significance of the difference in 
the risk score between the responsive and unresponsive 
groups. 

Association analysis between cell death subtype 
and Riskscore 

The distribution proportion of cell death subtypes in 
the High_ and Low_Risk groups was calculated, and 
significance was calculated by the chi-square test. 

RESULTS 

Differentially expressed gene (DEG) analysis 

The workflow of this research is shown in Figure 1. 
Through the difference analysis and screening 
threshold setting, 101 differentially expressed genes 
were obtained, including 86 upregulated and 15 
downregulated genes. The volcano map is shown in 
Figure S1A. In the functional enrichment analysis of 
differentially expressed DCD genes, we obtained 1917 
GO BPs, 123 GO CCs, 165 GO MFs and 59 KEGG 
pathways. As shown in Figure S1B-C, the top 10 GO 
and KEGG categories were mainly associated with cell 
death, inflammatory pathways and the immune 
response. 

Figure 1: The workflow of this study. 

 

Identification of DCD-associated molecular 
subtypes 

Based on 101 differentially expressed programmed-
cell-death genes (DCDGs) and their expression values 
in 683 glioma samples with prognostic information, 
consensus clustering was performed, and two 
distinguishing clusters were finally determined (Figure 
2A-C). The cell death score of each sample was 
calculated, and combined with the cell death cluster 
information, we found that the cell death score of 
Cluster 1 was significantly higher than that of Cluster 
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 2 (Figure 2D). Based on the obtained cell death clusters, 
the clinical and phenotypic data was sorted out, and the 
clinical information between clusters was compared, as 
shown in Table 1, showing that there were significant 
differences in age and grade between the two clusters. We 
further investigated the prognosis linked to the two 
clusters. The overall survival (OS) analysis indicated a 
significant difference in prognosis between the two 
clusters, with Cluster 1 having a worse prognosis than 
Cluster 2 (Figure 2E). Figure 2F shows the differential 
expression of DCDGs and clinicopathological 
characteristics between Cluster 1 and 2. Cluster 1 was 
preferentially associated with higher expression levels of 
DCDGs and higher grade (G4, Figure 2F). 

Figure 2: Identification of DCD-associated molecular 
subtypes. (A-C) consensus matrix heatmap (A), 
consensus cumulative distribution function plot (B), and 
delta area plot (C) showed two distinguishing clusters 
were determined.  

 

 

 

 

 

 

(D) A violin diagram showed DCD score of Cluster 1 
and Cluster 2. (E) The K-M survival analysis of Cluster 
1 and 2. (F) A heatmap showed differential expression 
of DCDGs and clinicopathological characteristics 
between Cluster 1 and 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table1: The clinical information of the two clusters. 

Features cluster1(n=356) cluster2(n=327) pvalue 

Age 
  

8.84E-10 

<60 240 286 
 

≥60 116 41 
 

Gender 
  

0.4705 

Female 146 144 
 

Male 210 183 
 

Grade 
  

< 2.2e-16 

G2 72 181 
 

G3 129 135 
 

G4 155 10 
 

 
Immune microenvironment analyses of DCD 
subtypes 

Alternatively, the CIBERSORT algorithm was used to 
estimate and compare the composition of infiltrated 
immune cell subpopulations between the two clusters. 
The analysis showed that monocytes, M2 macrophages, 
activated dendritic cells, and resting mast cells had a 
significantly higher and estimated proportion within 
Cluster 1 than in Cluster 2, while the estimated 
proportions of naïve B cells, plasma cells, CD4 T cells, 
and activated mast cells were significantly lower in 
Cluster 1 than in Cluster 2 (Figure 3A). The ssGSEA 
algorithm was used to evaluate the infiltration levels of 
immune cells. We found that the infiltration levels of 
activated CD4 and CD8 T cells, central memory CD4 
and CD8 T cells, macrophages, mast cells, MDSCs, 
natural killer cells, and regulatory T cells were 
significantly higher in Cluster 1 than in Cluster 2, while 
Cluster 2 had higher infiltration levels of monocytes and  

and memory CD4 T cells (Figure 3B). These results 
revealed different infiltrating immune cell spectra 
between the two clusters. The high proportion of M2 
macrophages and low proportion of M1 macrophages 
and plasma cells in Cluster 1 suggested that Cluster 1 
tends to have an immunosuppressive 
microenvironment compared with Cluster 2. Generally, 
tumors with higher HLA gene expression have more 
abundant infiltration of immune cells. However, the 
relationship between the expression of HLA family 
genes and the immune microenvironment and 
prognosis of glioma remains controversial. Here, we 
found significant expression differences in 18 HLA 
genes between the two clusters. Cluster 2 had lower 
expression levels of HLA genes than Cluster 1 (Figure 
3C). Among them, the HLA-DR expression level is 
closely related to the invasiveness of glioma and is 
positively correlated with the glioma grade. In addition, 
high levels of HLA-F expression are thought to be 
associated with higher grade and poorer prognosis of  
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 glioma. The gene expression levels of immune 
checkpoint genes (ICGs), including BTLA, CD274, 
CD47, CTLA4, HAVCR2, ICOS, IDO1, LAG3, 
PDCD1, PDCD1LG2, TNFRSF4, and TNFRSF9, in 
Cluster 1 were significantly higher than those in Cluster 
2 (Figure 3D), while SIRPA and VTCN1 had lower 
expression levels in Cluster 1 than in Cluster 2. The 
above results suggested an immune-suppressive and 
tumor-supportive microenvironment of Cluster 1. 

Then, hallmark gene enrichment of Cluster 1 vs. 2 was 
analyzed, and a total of 30 upregulated and 2 
downregulated hallmark gene sets were enriched. The 
top 10 upregulated hallmark gene sets are shown in 
Figure 3E, including gene sets related to the interferon-α 
response, inflammatory response, IL-2_STAT5 
signaling, IL-6_JAK_STAT3 signaling, allograft 
rejection, complement, and so on. Additionally, the 
ESTIMATE algorithm was used to estimate the immune 
score, stromal score, and microenvironment score. As 
shown in Figure 3F, the immune score, matrix score and 
microenvironment score were all significantly higher in 
Cluster 1 than in Cluster 2, indicating that Cluster 1 may 
have a more abundant infiltration of nontumor cells than 
Cluster 2. 

Figure 3: Immune microenvironment analyses of DCD 
subtypes. (A) Immune cell distribution box diagram 
based on the CIBERSORT algorithm. (B) Immune cell 
distribution box diagram based on the ssGSEA 
algorithm. (C) A distribution box diagram of HLA family 
genes. (D) A distribution box diagram of immune 
checkpoint genes. (E) GSEA enrichment results of up-
regulated hallmark genes (Cluster1 VS Cluster2). (F) The 
distrabution violin diagram showing immune score, 
stromal score and estimate score of two clusters. 

 

 

 

Differentially expressed gene analyses of DCDGs 

PPI analysis was performed on 101 differentially 
expressed DCDGs, including 385 PPI pairs and 95 
gene protein nodes (Figure S2A). Six topological 
algorithms (MCC, MNC, degree, EPC, closeness, 
betweenness) under Cytoscape were used for the 
analyses to obtain the ordering of genes. The top 20 
genes under each algorithm were selected for 
intersection, and 10 key DCDGs were finally screened 
out, as shown in Figure S2B-G. 

Identification of prognostic DCDGs 

Based on the 10 key DCDGs obtained above, 
univariate cox regression analysis was conducted, and 
the results showed that all 10 DCDGs had p values less 
than 0.05 (Figure 4A). Furthermore, combined with the 
expression values of the 10 genes in glioma samples as 
well as the survival time and survival state of the 
samples, 9 optimized feature genes were screened by 
LASSO cox regression, as shown in Figure 4B-C. Then, 
stepwise multifactor cox regression analysis was 
performed on the 9 characteristic genes, and 8 key 
genes related to prognosis were obtained and are shown 
in the forest plot, including CD44, CD68, CD74, 
CYBB, IL-18, IL1B, SYK, and TP53 (Figure 4D). 

Figure 4: Identification of prognostic DCDGs. (A) 
The univariate Cox regression forest plot of 10 DCDGs 
with significant prognostic correlation. (B-C) Lasso 
regression analysis screened 9 DCDGs. (D) 
Multivariate COX regression analysis identified 8 
DCDGs related to prognosis. 

 

Based on the multivariate regression coefficients of the 
8 genes and their expression levels, a risk model was 
constructed to obtain the risk scores of the samples in 
the training set and CGGA mRNAseq_325 verification 
set. Risk score visualization is shown in Figure 5A-B. 
According to the median Riskscore value, the samples 

were divided into high- and low-Risk groups. Kaplan‒
Meier survival analysis was conducted to evaluate the 
association between grouping and actual prognosis, as  
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 shown in Figure 5C-D. It is obvious that the high-risk 
patients have shorter survival times than the low-risk 
patients. Furthermore, 1-, 3- and 5-year survival ROC 
curves were produced according to survival 
information and risk scores (Figure 5E-F). The AUC 
values are 0.712, 0.789, and 0.8 for 1-, 3-, and 5-year 
survival in the verification set. The results showed that 
there was a significant correlation between grouping by 
risk score and actual prognosis. In addition, the risk 
score box plots under each clinical characteristic group 
(age, sex, grade) and among clusters were drawn and 
are shown in Figure 5G. This result indicated that there 
were significant differences in the risk scores of 
different clusters, grades, or ages.  

Figure 5: Evaluation of the prognostic significance of 
risk score. (A-B) For the training set (A) and CGGA 
mRNAseq_325 verification set (B), sample plots with 
risk score ranked from low to high and the 
corresponding survival time of each sample. (C-D) 
Survival curve of the training set (C) and CGGA 
mRNAseq_325 verification set (D). (E-F) ROC curves 
of the training set (E) and CGGA mRNAseq_325 
verification set (F). (G) Distribution box plots of the 
risk score under different clinical factors. 

 

Next, univariate cox regression analysis was carried out 
for age, sex, WHO grade, IDH status, MGMT status, 
and risk score (Figure 6A). Variables with p values < 
0.05 were included in multivariate cox regression 
analysis, and then factors with p values < 0.05 were 
further selected (Figure 6B). The nomogram in Figure 
6C showed that age, grade, IDH status, and RiskScore 
were independent risk indicators for gliomas. The 
calibration curve and ROC curve proved the accuracy 
of the nomogram (Figure 6D-E). 

 

Figure 6: Analysis of independent prognostic factors. 
(A-B) Forest plots showing the univariate (A) and 
multivariate (B) regression analyses of clinical factors. 
(C) The normgram showing independent risk indicators 
for gliomas. (D-E) The normgram calibration curve (D) 
and ROC curve (E). 

 

TMB and drug sensitivity prediction analyses 

According to the risk grouping and glioma grade, the 
samples were divided into 6 groups, and K‒M survival 
analysis was conducted and is shown in Figure 7A. The 
results revealed that both high grade and high-risk score 
was associated with short survival. In each grade, the 
high-risk group had a poorer prognosis as compared 
with the low-risk group.  

The top 20 genes with the highest mutation frequencies 
were shown in oncoplots in Figure 7B-C, showing that 
high-frequency mutations were significantly different 
between the high- and low-risk groups. The tumor 
mutation burden (TMB) score results showed that the 
high-risk group had significantly higher TMB score than 
the low-risk group (Figure 7D). In general, tumors with 
high TMB tend to be more aggressive and progress 
faster. In addition, the percentages of the two clusters 
were calculated and shown in Figure 7E.  

We found that the high-risk group contained more 
Cluster 1 samples than the low-risk group. In view of the 
immunosuppressive and tumor-supporting 
characteristics of Cluster 1, the results suggested that the 
risk score matched the status of tumor-induced 
immunosuppression. Then, a drug sensitivity prediction 
analysis was performed to calculate the half-maximal 
inhibitory concentration (IC50). The results indicated 
that 125 drugs showed significant differences in IC50 
values between the high- and low-risk groups. The 
different IC50 values of the common drugs rapamycin, 
axitinib and gefitinib were shown in Figure 7F-H. 
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   Figure 7: TMB analysis and drug sensitivity prediction 
analysis. (A) Combined survival analysis of risk and 
grade for glioma. (B-C) Waterfall plots showing the 
TOP20 genes with the highest mutation frequencies in 
the low- (B) and high-risk (C) groups. (D) A violin plot 
showing the TMB distribution of the low- and high-
risk groups. (E) Percentages of the two DCD subtypes 
in the low- and high-risk groups. (F-H) The box plots 
showing IC50 values of rapamycin (F), axitinib (G), 
gefitinib (H) in the low- and high-risk groups. 

 

Immune microenvironment analyses on the risk 
model 

First, Spearman correlation coefficients between 
model genes and immunoinfiltrating cells and the 
corresponding p values were calculated. The 
correlation heatmaps in Figure 8A-B showed that the 
model genes were positively correlated with the 
infiltration of effector-memory-CD8-T cell, 
neutrophil, type-1-T-helper-cell, natural-killer-cell, 
macrophage M2, activated-dendritic-cell and so on. 
TIDE represents tumor immune dysfunction and 
rejection and is commonly used to assess the likelihood 
of tumor immune escape. The violin plot in Figure 8C 
revealed a significant difference in the TIDE score 
between the high- and low-risk groups. This result 
suggested that the high-risk group may have a stronger 
immune escape potential than the low-risk group. The 
risk score of samples in GSE91061 was calculated, and 
a risk score distribution box plot of the response and 
nonresponse groups was produced. The results 
showed that the nonresponse group had a higher risk 
score than the response group (Figure 8D). 
Furthermore, the proportion of response and 
nonresponse was counted, and we found that the high-
risk group contained more nonresponse patients 
(Figure 8E). Above results indicated that the high-risk 
group was less responsive to immunotherapy than the  

 

low-risk group. In addition, the high-risk group 
showed poorer prognosis than the low-risk group 
(Figure 8F). These results revealed that the high-risk 
group had more significant immune escape 
characteristics and a lower likelihood of 
immunotherapy benefit than the low-risk group. 

Figure 8: Immune microenvironment analyses on the 
risk model. (A-B) Heatmaps showing correlations of 
8 model genes with infiltrating immune cells using 
ssGSEA (A) and cibersort algorithm (B). (C) TIDE 
score of the low- and high-risk groups. (D) The risk 
score of the non-response and response groups. (E) 
Percentages of non-response and response in the low- 
and high-risk groups. (F) K-M survival curve for the 
low- and high-risk groups in the GSE91061 dataset. 

 

DISCUSSION 

By estimation, gliomas account for approximately 
80% of central nervous system malignant tumors 
worldwide Ostrom et al. (2021). Despite 
improvements in diagnosis and treatment in recent 
years, the prognosis of gliomas, especially 
glioblastomas, remains unsatisfactory. 

Cell death is a necessary condition to maintain the 
growth and development of organisms Milligan et al. 
(1997). One of the critical characteristics of tumor 
cells is its resistance to cell death. By resisting death 
and avoiding immune killing, tumor cells achieve 
continuous division and proliferation out of control 
of the normal growth regulatory system Strasser et al. 
(2020). However, the hypermetabolism of tumor cells 
causes a relative shortage of oxygen and nutrients 
needed for tumor growth and induces necrotizing cell 
death in the interior of solid tumors Lee et al. (2018). 
With new discoveries of cell death pathways and 
related mechanisms, the understanding of the role of 
cell death in tumors is constantly deepening. The 
prognostic value of multiple DCD-related genes in 

 

672 



 

 
  

HUMAN BIOLOGY 

2024, VOL. 94, ISSUE 3 

ORIGINAL ARTICLE 

Human Biology (May-Jun)2024, Vol 94, Issue 3, pp:665-675 Copyright ©2024, Human Biology, visit humbiol.org 

   malignant tumors, including glioma, has been 
consistently validated. For example, Wang et al. 

constructed a risk model based on cuproptosis‐related 
lncRNAs, which showed good prognostic prediction 

performance and indicated the immuno‐
microenvironment status for glioma Wang et al. 
(2022). Chen et al. identified 11 ferroptosis-related 
genes highly correlated with the prognosis of glioma 
patients Chen et al. (2021). However, there is a lack of 
a comprehensive evaluation of all DCD-related genes 
in terms of their prognostic value, strata performance 
and immunologic characteristics in glioma, which is 
the scientific problem our study aims to address. 

Numerous studies have demonstrated that infiltrating 
immune cells in the microenvironment exert dual 
effects of promoting tumor and antitumor growth Bi 
et al. (2022), Strazza et al. (2020). On account of the 
destruction of blood‒brain barrier integrity by gliomas 
and the lymphatic outflow channels, the immune 
system can communicate with cells within the central 
nervous system Karmur et al. (2020), Lan et al. (2023). 
The immune infiltration of gliomas is characterized by 
extensive spatial and molecular heterogeneity. 
Gliomas can be infiltrated by a variety of immune 
cells, including macrophages, microglia, B cells, T 
cells, myeloid suppressor cells (MDSCs), etc. 
Domingues et al. (2016). Previous studies have shown 
that the number of microglia and macrophages is 
positively correlated with glioma grade and 
invasiveness Astell et al. (2017). Our study revealed 
that both monocytes and M2 macrophages showed 
significantly higher infiltrating levels in Cluster 1 than 
in Cluster 2. Monocytes infiltrate the tumor and 
differentiate into tumor-associated macrophages and 
dendritic cells, which influence the tumor 
microenvironment through various mechanisms and 
result in immune tolerance, angiogenesis and 
metastasis Ugel et al. (2021). M2 macrophages 
synthesize and release many anti-inflammatory factors 
(such as IL-10 and TGF-β).), immunosuppressive 
factors and a variety of cytokines, inhibiting the 
inflammatory response and promoting tumor growth 
and metastasis Wu et al. (2020). In addition, another 
type of cancer-promoting immune cell, type-2 helper 
(Th2) cells, was upregulated in Cluster 1 compared 
with Cluster 2. Alternatively, some antitumor immune 
cells, such as plasma cells, M1 macrophages and 
activated mast cells, were upregulated in Cluster 2. The 
results showing more abundant M2 macrophages and 
Th2 cells but fewer M1 macrophages and plasma cells 
in Cluster 1 was consistent with the analysis that 
Cluster 1 showed a poorer prognosis than Cluster 2. 
For most HLA genes and immunological checkpoint 
genes (ICGs), their expression levels in Cluster 1 were 
higher than in Cluster 2. Therefore, these HLA genes 
and ICGs are expected to be potentially effective 
therapeutic targets for Cluster 1. In most cancers, 

 

a higher TMB represents a better response to immune 
checkpoint suppression therapy. However, high TMB 
in gliomas has rarely been reported to be associated 
with better survival outcomes in response to 
immunotherapy. In a study published in 2021 
Gromeier et al. (2021), in two queues layered by TMB, 
patients with recurrent GBM (rGMB) with a TMB ≤ 
median lived longer after anti-PD-1/PD-L1 treatment 
than patients with a TMB > median. Therefore, TMB 
may not be an independent predictor of the response 
to immunotherapy in glioma. Instead, we used TIDE 
to predict the response to immunotherapy. The TIDE 
score provides a better assessment of the efficacy of 
anti-PD1 and anti-CTLA4 therapies than widely used 
biomarkers (TMB, PD-L1, and interferon-γ). In 
addition, TIDE was stable in predicting efficacy 
regardless of the tumor-infiltrating level of cytotoxic T 
cells Jiang et al. (2018). Our analyses suggested that 
high risk tends to be associated with immunotherapy 
nonresponse compared to low risk. 

It should be noted that since DCD contains a wide 
variety of cell death pathways, the distinct DCD levels 
may cause different effects, leading to dual roles in 
glioma. When the DCD level is not sufficient to induce 
cell death, glioma cells may activate intrinsic signaling 
pathways as response to stimulation and resist death. 
However, sufficient levels of DCD to induce cancer 
cell death may be a promising option for glioma 
therapies. 

Nevertheless, there are still some limitations. First, 
phase 3 randomized controlled trials are lacking in this 
study, so the decision-making role and strata 
performance of this DCD-related model in a specific 
patient population cannot be verified. Second, the 
biological functions of some DCD genes need to be 
investigated intensively in both in vivo and in vitro 
experimental studies to fully understand their roles in 
the pathogenesis and progression of glioma. 

In conclusion, we established a DCD-related signature 
classification model and a DCD-based risk model to 
predict the prognosis and intratumor 
microenvironment for glioma patients, which is of 
significance for the development of glioma treatment 
strategies. 

DECLARATIONS  

Ethics approval and consent to participate 

This article does not address any ethical issues. 

Consent for publication 

All authors gave their consent for publication. 

Funding 

This work was supported by the National Natural 
Science Foundation of China [82203647], Special  

 
673 



 

 
  

HUMAN BIOLOGY 

2024, VOL. 94, ISSUE 3 

ORIGINAL ARTICLE 

Human Biology (May-Jun)2024, Vol 94, Issue 3, pp:665-675 Copyright ©2024, Human Biology, visit humbiol.org 

 

 

  

 Project of Health Research Talents of Jilin Province 
[2022SC234], and Norman Bethune Program of Jilin 
University [2022B28]. 

Competing interests 

No potential conflict of interest was reported by any 
authors of this research. 

Availability of data and materials 

Data available on request from the first author Lin Wang 
through wlmumu@jlu.edu.cn. 

Author contributions statement 

Lin Wang wrote the main manuscript text and prepared 
figures 1-5. Jia Song, Jing Xu, and Yidan Qin prepared 
figures 6-8. Jia Li, Yajuan Sun, and Hui Jin processed 
data. Jiajun Chen and Ziqian Wang supervised the study. 
All authors reviewed the manuscript. 

Acknowledgement 

Not applicable. 

REFERENCES 

1. Nicholson JG, Fine HA. 2021 Mar. Diffuse Glioma 
Heterogeneity and Its Therapeutic Implications, Cancer 
Discov. 11(3):575-590. 

2. Barthel FP, Johnson KC, Varn FS, et al. 2019 Dec. 
Longitudinal molecular trajectories of diffuse glioma in 
adults. Nature. 576(7785):112-120. 

3. Hu X, Martinez-Ledesma E, Zheng S, et al. 2017 Jun 
1. Multigene signature for predicting prognosis of 
patients with 1p19q co-deletion diffuse glioma. Neuro 
Oncol. 19(6):786-795. 

4. Strasser A, Vaux DL. 2020 Jun 18. Cell Death in the 
Origin and Treatment of Cancer. Mol Cell. 78(6):1045-
1054. 

5. Qi X, Li Q, Che X, et al. 2022 Mar 10. Application of 
Regulatory Cell Death in Cancer: Based on Targeted 
Therapy and Immunotherapy. Front Immunol. 
13:837293. 
6. Kopeina GS, Zhivotovsky B. 2022 Dec 10. 
Programmed cell death: Past, present and future, 
Biochem Biophys Res Commun. 633:55-58.  

7. Liu J, Hong M, Li Y, et al. 2022 Mar 30. Programmed 
Cell Death Tunes Tumor Immunity, Front Immunol. 
13:847345. 

8. Bogler O, Weller M. 2002 Aug 1. Apoptosis in gliomas, 
and its role in their current and future treatment, Front 
Biosci. 7:e339-53. 

9. Yan J, Wan P, Choksi S, et al. 2022 Jan. Necroptosis 
and tumor progression. Trends Cancer. 8(1):21-27. 

 

10. Yuan J, Amin P, Ofengeim D. 2019 Jan. 
Necroptosis and RIPK1-mediated 
neuroinflammation in CNS diseases. Nat Rev 
Neurosci. 20(1):19-33. 

11. Wei X, Xie F, Zhou X, et al. 2022 Sep. Role of 
pyroptosis in inflammation and cancer. Cell Mol 
Immunol. 19(9):971-992. 

12. Wang Y, Wei Z, Pan K, et al. 2020 Dec. The 
function and mechanism of ferroptosis in cancer. 
Apoptosis. 25(11-12):786-798. 

13. Wang L, Li Y, Wang Y, et al. 2022 Dec. 
Identification of cuproptosis-related lncRNAs for 
prognosis and immunotherapy in glioma. J Cell Mol 
Med. 26(23):5820-5831. 

14. Ostrom QT, Cioffi G, Waite K, et al. 2021 Oct 5. 
CBTRUS Statistical Report: Primary Brain and Other 
Central Nervous System Tumors Diagnosed in the 
United States in 2014-2018. Neuro Oncol. 23(12 
Suppl 2):iii1-iii105. 

15. Milligan CE, Schwartz LM. 1997. Programmed 
cell death during animal development. Br Med Bull. 
53(3):570-90. 

16. Lee SY, Ju MK, Jeon HM, et al. 2018 Jan 31. 
Regulation of Tumor Progression by Programmed 
Necrosis. Oxid Med Cell Longev. 2018:3537471. 

17. Chen Z, Wu T, Yan Z, et al. 2021 Jun 23. 
Identification and Validation of an 11-Ferroptosis 
Related Gene Signature and Its Correlation with 
Immune Checkpoint Molecules in Glioma. Front 
Cell Dev Biol. 9:652599. 

18. Bi Q, Wu JY, Qiu XM, et al. 2022 Jun 13. Tumor-
Associated Inflammation: The Tumor-Promoting 
Immunity in the Early Stages of Tumorigenesis. J 
Immunol Res. 2022:3128933. 

19. Strazza M, Mor A. 2020 Aug. The Complexity of 
Targeting Chemokines to Promote a Tumor Immune 
Response. Inflammation. 43(4):1201-1208. 

20. Karmur BS, Philteos J, Abbasian A, et al. 2020 
Sep 18. Blood-Brain Barrier Disruption in Neuro-
Oncology: Strategies, Failures, and Challenges to 
Overcome. Front Oncol. 10:563840. 

21. Lan YL, Wang H, Chen A, et al. 2023 Feb. Update 
on the current knowledge of lymphatic drainage 
system and its emerging roles in glioma management. 
Immunology. 168(2):233-247. 

22. Domingues P, Gonzalez-Tablas M, Otero A. et 
al. 2016 Mar. Tumor infiltrating immune cells in 
gliomas and meningiomas. Brain Behav Immun. 
53:1-15. 

 

674 



 

 
  

HUMAN BIOLOGY 

2024, VOL. 94, ISSUE 3 

ORIGINAL ARTICLE 

Human Biology (May-Jun)2024, Vol 94, Issue 3, pp:665-675 Copyright ©2024, Human Biology, visit humbiol.org 

 
 23. Astell KR, Sieger D. 2017. Investigating microglia-
brain tumor cell interactions in vivo in the larval 
zebrafish brain. Methods Cell Biol. 138:593-626. 

24. Ugel S, Cane S, De Sanctis F, et al. 2021 Jan 24. 
Monocytes in the Tumor Microenvironment, Annu Rev 
Pathol. 16:93-122. 

25. Wu K, Lin K, Li X, et al. 2020 Aug 4. Redefining 
Tumor-Associated Macrophage Subpopulations and 
Functions in the Tumor Microenvironment. Front 
Immunol. 11:1731. 

 

26. Gromeier M, Brown MC, Zhang G, et al. 2021 Jan 
13. Very low mutation burden is a feature of inflamed 
recurrent glioblastomas responsive to cancer 
immunotherapy. Nat Commun. 12(1):352. 

27. Jiang P, Gu S, Pan D, et al. 2018 Oct. Signatures 
of T cell dysfunction and exclusion predict cancer 
immunotherapy response. Nat Med. 24(10):1550-
1558. 

 

675 


